Вероятностное машинное обучение. Дополнительные темы: предсказание, порождение, обнаружение, действие
Книга является первым томом к книге "Вероятностное машинное обучение. Дополнительные темы: предсказание, порождение, обнаружение, действие".
Дополняя ранее изданную книгу «Вероятностное машинное обучение. Введение», этот классический труд знакомит читателя с деталями самых актуальных теорий и методов машинного обучения, включая глубокие порождающие модели, графовые модели, байесовский вывод, обучение с подкреплением и причинность. Глубокое обучение излагается в контексте более широкого статистического контекста, а подходы к глубокому обучению унифицированы с подходами к вероятностному моделированию и выводу.
Основные темы:
- вероятность;
- статистика;
- графовые модеи;
- теория информации;
- оптимизация;
- алгоритмы вывода;
- Гауссова фильтрация и сглаживание;
- алгоритмы передачи сообщений;
- вариационный вывод;
- методы Монте-Карло.
Отдельные части книги написаны ведущими исследователями и специалистами в предметной области из таких компаний, как Google, DeepMind, Amazon, университет Пердью, Нью-Йоркский и Вашингтонский университеты; в частности, по этой причине книга крайне важна для понимания животрепещущих проблем машинного обучения.
Кэвин Патрик Мэрфи получил степень бакалавра в Кэмбридже, Англия, и продолжил образование в США (магистр технических наук в Пенсильванском университете, доктор в Калифорнийском университете в Беркли, постдокторантура в МТИ). В 2004 году занял должность профессора информатики и статистики в Университете Британской Колумбии в Ванкувере. Работает в отделении Google в Маунтин-Вью, где занимается искусственным интеллектом, машинным обучением, компьютерным зрением и пониманием текстов на естественном языке.
Информация о книге | |
Автор | Кэвин П. Мэрфи |
Обложка | Твёрдая |
Количество страниц | 770 |
Язык издания | Русский |
Иллюстрации | Цветные |
Год издания | 2024 |