Основы статистического обучения. Тибширани Роберт, Фридман Джером, Хасти Тревор

Основы статистического обучения. Тибширани Роберт, Фридман Джером, Хасти Тревор


  • Артикул: LB-0018794
  • Наличие:Нет на складе

  • 1100.00 грн.

В книге излагаются основы статистического обучения для решения практических задач, возникающих в медицине, биологии, финансах и многих других отраслях науки и промышленности. В частности, рассматриваются основные понятия и методы статистического обучения: линейная регрессия, нелинейная регрессия, линейные методы классификации, регуляризация, ядерное сглаживание, оценивание и выбор моделей, аддитивные модели, деревья классификации, нейронные сети, случайные леса и многое другое. Авторы приводят множество примеров и иллюстраций применения этих методов на практике. Авторы книги являются выдающимися авторитетами в математической статистике и машинном обучении: Тревор Хасти — обладатель звания ISI Highly Cited Author in Mathematics по версии ISI Web of Knowledge, Роберт Тибширани — изобретатель метода LASSO и обладатель Золотой медали Статистического общества Канады, Джером Фридман — широко известный специалист по машинному обучению и автор многочисленных монографий. Книга Основы статистического обучения представляет огромный интерес для специалистов. В течение последнего десятилетия произошел взрыв в области вычислений и информационных технологий. Вместе с ним появились огромные объемы данных в различных областях, таких как медицина, биология, финансы и маркетинг. Проблема понимания этих данных привела к разработке новых статистических инструментов и породила новые научные дисциплины, такие как интеллектуальный анализ данных, машинное обучение и биоинформатика. Многие из этих инструментов имеют общие научные основания, но часто описываются с помощью другой терминологии. В настоящей книге описываются важные идеи в этих областях с единой теоретической точки зрения. Хотя этот подход является статистическим, упор делается на концепции, а не на математику. Приводится много примеров с широким использованием цветной графики. Книга представляет собой ценный источник информации для статистиков и всех, кто интересуется интеллектуальным анализом данных в науке или промышленности. Охват книги широк: от обучения с учителем (прогнозирования) до обучения без учителя. В ней описаны нейронные сети, метод опорных векторов, деревья классификации и бустинг, который впервые всесторонне рассмотрен в книге, а не в отдельных публикациях. В данном глубоко переработанном издании представлены многие темы, не охваченные в первом издании, включая графовые модели, случайные леса, ансамблевые методы, алгоритмы регрессии наименьших углов и алгоритмы построения траекторий для методов LASSO, неотрицательной факторизации матриц и спектральной кластеризации. В книге также есть глава о методах анализа "широких" данных (когда p больше, чем n), включая множественное тестирование и долю ложных отклонений гипотезы.

Информация о книге
Автор Тибширани Роберт, Фридман Джером, Хасти Тревор
Обложка Мягкий
Язык издания Русский
Год издания 2020
Бумага Офсетная
Страниц 768

Написать отзыв

Примечание: HTML разметка не поддерживается! Используйте обычный текст.
    Плохо           Хорошо
Защита от роботов