Генеративное глубокое обучение. Творческий потенциал нейронных сетей
Генеративное моделирование — одна из самых обсуждаемых тем в области искусственного интеллекта. Машины можно научить рисовать, писать и сочинять музыку. Вы сами можете посадить искусственный интеллект за парту или мольберт, для этого достаточно познакомиться с самыми актуальными примерами генеративных моделей глубокого обучения: вариационные автокодировщики, генеративно-состязательные сети, модели типа кодер-декодер и многое другое.
Дэвид Фостер делает понятными и доступными архитектуру и методы генеративного моделирования, его советы и подсказки сделают ваши модели более творческими и эффективными в обучении. Вы начнете с основ глубокого обучения на базе Keras, а затем перейдете к самым передовым алгоритмам.
- Разберитесь с тем, как вариационные автокодировщики меняют эмоции на фотографиях
- Создайте сеть GAN с нуля
- Освойте работу с генеративные моделями генерации текста
- Узнайте, как генеративные модели помогают агентам выполнять задачи в рамках обучения с подкреплением
- Изучите BERT, GPT-2, ProGAN, StyleGAN и многое другое.
Дэвид Фостер делает понятными и доступными архитектуру и методы генеративного моделирования, его советы и подсказки сделают ваши модели более творческими и эффективными в обучении. Вы начнете с основ глубокого обучения на базе Keras, а затем перейдете к самым передовым алгоритмам.
- Разберитесь с тем, как вариационные автокодировщики меняют эмоции на фотографиях
- Создайте сеть GAN с нуля
- Освойте работу с генеративные моделями генерации текста
- Узнайте, как генеративные модели помогают агентам выполнять задачи в рамках обучения с подкреплением
- Изучите BERT, GPT-2, ProGAN, StyleGAN и многое другое.
Информация о книге | |
Автор | Фостер Дэвид |
Количество страниц | 352 |
Язык издания | Русский |
Год издания | 2020 |
ISBN | 978-5-4461-1566-2 |
Вес | 567 |
Вид переплета | Мягкая |
Тематика | Программное обеспечение |